Reçu le 17 février 2005 Accepté le 21 mars 2005

Internet 9 avril 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Najoua Ouerfelli, Mohamed Faouzi Zid et Tahar Jouini*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar II Tunis, Tunisie

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (Fe–O) = 0.005 Å Disorder in solvent or counterion R factor = 0.040 wR factor = 0.102 Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Composé à charpente bidimensionnelle K₃Fe₃(AsO₄)₄

Tripotassium triiron(III) tetraarsenate, $K_3Fe_3(AsO_4)_4$, has been synthesized at high temperature by solid-state reaction. The structure is built up from corner- and edge-sharing between FeO₆ octahedra and AsO₄ tetrahedra. The structure can be described as infinite anionic layers parallel to the (010) plane. Alkali metal cations are located in the interlayer space. The relationship between the title compound and $K_3Fe_3(PO_4)_4$ ·H₂O structures is discussed. The title compound is isostructural with $K_3Cr_3(AsO_4)_4$.

Commentaire

Les phosphates de fer présentent un intérêt potentiel en raison de leurs applications comme inhibiteurs de corrosion (Meisel *et al.*, 1983), pour la passivation de surfaces métallique (Attali *et al.*, 1980) ainsi que pour leurs intéressantes propriétés magnétiques (Korzenski & Kolis, 1999). De plus comme tous les composés à charpente mixtes octaèdre-tétraèdre, ils peuvent présenter des charpentes anioniques ouvertes bi- ou tri-dimensionnelles et avoir des applications en catalyse hétérogène, comme produits d'intercalation (Moffat, 1978; Guesdon *et al.*, 1990; Nguyen & Sleight, 1996; Centi *et al.*, 1988) et comme échangeurs cationiques et conducteurs ioniques (Daidouh *et al.*, 1997; Maximov *et al.*, 1994; Lii & Wang, 1989).

Les arséniates étant moins étudiés que les phosphates, nous avons étendu notre investigation aux systèmes A-Fe-As-

Unité asymétrique dans le composé K₃Fe₃(AsO₄)₄. [Codes de symétrie: (i) -x, y, z; (ii) $\frac{1}{2} - x, y, \frac{1}{2} - z;$ (iii)-x, -y, -z; (iv) x, -y, -z; (v) $\frac{1}{2} - x, -y, z - \frac{1}{2};$ (v) -x, -y, 1 - z.]

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

Figure 2

Projection de la structure de $K_3Fe_3(AsO_4)_4$ selon *a*, mettant en évidence l'emplacement des cations dans l'espace inter-couches.

O (A = Na, K et Ag) dans lesquels nous avons précédemment mis en évidence les arséniates NaFeAs₂O₇ et AgFeAs₂O₇ (Ouerfelli *et al.*, 2004). Une nouvelle phase K₃Fe₃(AsO₄)₄ vient d'être isolée dans le système K₂O-Fe₂O₃-As₂O₅; elle est isostructurale du composé K₃Cr₃(AsO₄)₄ (Friaa *et al.*, 2003). De ce fait, nous mettrons l'accent sur la discussion de caractéristiques structurales non mises en évidence précédemment et sur la comparaison entre le composé de formulation K₃Fe₃(AsO₄)₄ et K₃Fe₃(PO₄)₄·H₂O (Lii, 1995).

L'unité asymétrique $[Fe_2As_2O_{15}]$ (Fig.1) est formée d'un cycle comportant deux octaèdres FeO_6 et un tétraèdre $As1O_4$ partageant des sommets. Un deuxième tétraèdre $As2O_4$ se greffe sur l'octaèdre $Fe2O_6$ par mise en commun d'une arête.

Chaque unité $[Fe_2As_2O_{15}]$ est connectée à cinq voisines au moyen de ponts mixtes Fe-O-As de manière à former des couches parallèles au plan (010). Cette charpente bidimensionnelle possède des fenêtres de sections hexagonales (Fig. 3) pouvant permettre aux cations K^+ de se déplacer d'un espace inter-couches à un autre (Fig. 2).

Cette structure se distingue par la présence d'atomes d'oxygène triplement liés, à deux octaèdre FeO_6 et à un tétraèdre As2O₄. Cet atome participe ainsi à deux types de pont As-O-Fe et Fe-O-Fe.

L'existence d'une arête commune entre l'octaèdre Fe2O₆ et le tétraèdre As2O₄ entraîne le raccourcissement de la liaison $O2-O2^{ii}$ [code de symétrie: (ii) $\frac{1}{2}-x$, y, $\frac{1}{2}-z$] et une importante contraction des angles $O2-As2-O2^{ii}$ et O2-Fe2 $-O2^{ii}$. En effet la liaison $O2-O2^{ii}$, 2,518 (9) Å, est sensiblement inférieure à la moyenne des distances O-O

Figure 3 Projection d'une couche selon b et l'emplacement des cations K⁺ en faces des fenêtres hexagonales.

rencontrées dans le tétraèdre As2O₄ [2,764 (6) Å] et dans l'octaèdre Fe2O₆ [2,8345 (7) Å]. De même, les angles O2–As2–O2ⁱⁱ [93,4 (3)°] et O2–Fe2–O2ⁱⁱ [73,2 (3)°] sont inférieurs à ceux rencontrés respectivement dans le tétraèdre As1O₄ et dans l'octaèdre Fe1O₆. Ceci est confirmé par le calcul de l'indice de distorsion (tableau 2) utilisant les formules développées par Baur & Wildner (Baur, 1974; Wildner, 1992):

Ces résultats révèlent des indices de distortion angulaires ID_a et de liaison O–O ID_o pour tétraèdre As2O₄ trois fois plus importants que ceux pour le tétraèdre As1O₄. L'octaèdre Fe2O₆ semble soumis à moins de contrainte puisque ses indices de distorsion ne diffèrent pas sensiblement de ceux de l'octaèdre Fe1O₆.

Les structures des composés $K_3Fe_3(AsO_4)_4$ (Cmca) et $K_3Fe_3(PO_4)_4$ ·H₂O (Pnna), renferment les mêmes types de couches perpendiculaires à **b**. Mais le phosphate possède des molécules d'eau dans l'espace intercouches. Il en résulte que deux couches successives sont reliées par un glissement *n* au lieu d'un glissement *c* pour l'arséniate, vraisemblablement pour favoriser les liaisons hydrogène assurant la fixation des molécules d'eau.

Partie expérimentale

La synthèse de K₃Fe₃(AsO₄)₄ a été effectuée par réaction à l'état solide, à partir d'un mélange de carbonate de potassium, de nitrate de fer et de dihydrogénoarséniate d'ammonium dans un rapport molaire K:Fe:As égal à 2:1:5 respectivement. Après un broyage poussé dans un mortier en agate, le mélange est placé dans un creuset en alumine, puis porté dans un premier temps à une température de 673 K pendant 4 heures, en vue d'éliminer les produits volatils. Un second traitement thermique a été effectué à la température de synthèse, 1173 K pendant 24 heures. Le résidu final est ensuite ramené à la température ambiante à une vitesse de refroidissement de 20 K h⁻¹. Des cristaux de couleur verdâtre sont séparés à l'eau bouillante. Le dépouillement du spectre infrarouge relatif au composé étudié révèle la présence des bandes principales d'absorption asymétriques et symétriques v_{as} (AsO₄) à 876, v_a (AsO₄) à 804 et v_{as} (Fe–O–Fe) à 638 cm⁻¹.

Données cristallines

 $K_3Fe_3(AsO_4)_4$ $M_r = 840,53$ Orthorhombique, *Cmca* a = 10,898 (2) Å b = 21,521 (5) Å c = 6,623 (2) Å V = 1553,3 (7) Å³ Z = 4 $D_x = 3,594$ Mg m⁻³

Collection des données

Enraf—Nonius CAD-4 diffractomètre Balayage $\omega/2\theta$ Correction d'absorption: balayage ψ (North *et al.*, 1968) $T_{min} = 0.325, T_{max} = 0.785$ 1074 réflexions mesurées 893 réflexions indépendantes 714 réflexions avec $I > 2\sigma(I)$

Affinement

Affinement à partir des F^2 R(F) = 0,040 $wR(F^2) = 0,102$ S = 1,08893 réflexions 88 paramètres $w = 1/[\sigma^2(F_o^2) + (0,0275P)^2 + 68,5196P]$ $où P = (F_o^2 + 2F_c^2)/3$

Tableau 1

Paramètres géométriques (Å, °).

	(**) 1	1 (***)	()
Fe1-O2 ⁱⁱⁱ	2.041 (5)		
Fe1-O1	1.931 (7)	K4–O5 ^{vii}	2.975 (4)
Fe1-O1 ⁱⁱⁱ	1.931 (7)	Fe2-O2 ⁱⁱ	2.110 (5)
As2-O2	1.729 (5)	Fe2-O2	2.110 (5)
As2–O2 ⁱⁱ	1.729 (5)	Fe2-O3 ^{vi}	2.032 (5)
As2-O3	1.670 (5)	Fe2-O3 ^v	2.032 (5)
As2-O3 ⁱⁱ	1.670 (5)	Fe2-O4	1.908 (6)
As1-O4 ⁱ	1.696 (6)	Fe2–O4 ⁱⁱ	1.908 (6)
As1-O4	1.696 (6)	Fe1-O2 ⁱ	2.041 (5)
As1-O1	1.683 (8)	Fe1-O2 ^{iv}	2.041 (5)
As1-O5	1.649 (8)	Fe1-O2	2.041 (5)

Codes de symétrie: (i) -x, y, z; (ii) $\frac{1}{2} - x, y, \frac{1}{2} - z$; (iii) -x, -y, -z; (iv) x, -y, -z; (v) $\frac{1}{2} - x, -y, z - \frac{1}{2}$; (vi) x, -y, 1 - z; (vii) $-x, \frac{1}{2} - y, \frac{1}{2} + z$.

Tableau 2

Indice de distorsion (ID) des polyèdres de coordination de Fe et As.

	ID_d	ID_a	ID_o
Fe1O ₆	0,0241	0,0389	0,0306
Fe2O ₆	0,0367	0,0488	0,0382
As10 ₄	0,0092	0,0166	0,0079
As2O ₄	0,0180	0,0485	0,0324

$$\begin{split} \mathrm{ID}_{d} &= [\Sigma_{i=1}^{n1}(|d_{i} - d_{m}|)/n_{1}d_{m}], \mathrm{ID}_{a} = [\Sigma_{i=1}^{n2}(|a_{i} - a_{m}|)/n_{2}a_{m}] \text{ et } \mathrm{ID}_{o} = [\Sigma_{i=1}^{n2}(|o_{i} - o_{m}|)/n_{2}o_{m}], \\ \mathrm{avec} \ d = \mathrm{distance} \ \mathrm{Fe}/\mathrm{As}-\mathrm{O}, \ a = \mathrm{angle} \ \mathrm{O}-\mathrm{Fe}/\mathrm{As}-\mathrm{O}, \ o = \mathrm{distance} \ \mathrm{O}-\mathrm{O}, \ m = \mathrm{valeur} \\ \mathrm{moyenne, \ et } n_{1} \ \mathrm{et} \ n_{2} \ \mathrm{valent} \ 4 \ \mathrm{et} \ 6 \ \mathrm{pour} \ \mathrm{let} \ \mathrm{tfack} \ \mathrm{et} \ 6 \ \mathrm{et} \ 12 \ \mathrm{pour} \ \mathrm{local} \ \mathrm{clack} \ \mathrm{clack} \ \mathrm{dec} \ \mathrm{et} \ \mathrm{dec} \ \mathrm{dec$$

Mo $K\alpha$ radiation Paramètres de la maille à l'aide de 25 réflexions $\theta = 11,5-14,2^{\circ}$ $\mu = 12,11 \text{ mm}^{-1}$ T = 298 (2) K Parallélépipède, vert 0,18 × 0,08 × 0,02 mm

 $\begin{aligned} R_{\rm int} &= 0.026\\ \theta_{\rm max} &= 27.0^{\circ}\\ h &= -2 \rightarrow 13\\ k &= 0 \rightarrow 27\\ l &= 0 \rightarrow 8\\ 2 \text{ réflexions de référence}\\ \text{fréquence: 120 min}\\ \text{variation d'intensité: 1\%} \end{aligned}$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 1.62 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -1.65 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Correction} \ {\rm d'extinction:} \\ SHELXL97 \ ({\rm Sheldrick, 1997}) \\ {\rm Coefficient} \ {\rm d'extinction:} \ 0.00122 \ (8) \end{array}$

La localization des atomes de potassium s'est avérée délicate du fait de l'existence de désordre, en effet, une première série de Fourier ne révèle qu'un seul pic important (environ 20 e Å⁻³). Il a été alors nécessaire de prendre en considération des pics de hauteur moyenne 5 e Å⁻³, mais pouvant avoir une signification structurale du fait de leurs environnements en atomes d'oxygène. Ainsi cinq nouveaux cations ont été trouvés. Une contrainte, respectant la neutralité électrique, a été appliquée aux taux d'occupation des six cations potassium. De plus, l'affinement anisotrope conduisant a des ellipsoïdes très déformés, la contrainte (EADP) du programme *SHELX*97 (Sheldrick, 1997) a du être appliquée.

Collection des données: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992; Enraf–Nonius, 1994); affinement des paramètres de la maille: *CAD-4 EXPRESS*; réduction des données: *XCAD4* (Harms & Wocadlo, 1995); programme(s) pour la solution de la structure: *SHELXS*97 (Sheldrick, 1997); programme(s) pour l'affinement de la structure: *SHELXL*97 (Sheldrick, 1997); graphisme moléculaire: *DIAMOND* (Brandenburg, 1998); logiciel utilisé pour préparer le matériel pour publication: *SHELXL*97 and *WinGX* (Farrugia, 1999).

Références

- Attali, S., Vigouroux, B., Lenzi, M. & Persia, J. (1980). J. Catal. 63, 496–500. Baur, W. H. (1974). Acta Cryst. B30, 1195–1215.
- Brandenburg, K. (1998). DIAMOND. Version 2.0. Université de Bonn, Allemaone
- Centi, G., Trifiro, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55-61.

Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28–31. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, Pays Bas.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Friaa, B. B., Boughzala, H. & Jouini, T. (2003). J. Solid State Chem. 173, 273– 279.
- Guesdon, A., Borel, M. M., Leclaire, A., Grandin, A. & Raveau, B. (1990). J. Solid State Chem. 89, 83–87.

Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne. Korzenski, M. B. & Kolis, J. W. (1999). J. Solid State Chem. 147, 390–398.

- Lii, K. H. (1995). Eur. J. Solid State Inorg. Chem. **32**, 917–926.
- Lii, K. H. & Wang, S. H. (1989). J. Solid State Chem. **95**, 239–245.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. **25**, 73–80.
- Maximov, B., Bolotina, N., Tamazyan, R. & Schulz, H. (1994). Z. Kristallogr.
- **209**, 649–656.

Meisel, W., Guttmann, H. J. & Gütlich, O. (1983). Corros. Sci. 23, 1373–1379. Moffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199–258.

- Nguyen, P. T. & Sleight, A. W. (1996). J. Solid State Chem. 122, 259-265.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 85–97.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. (Release 97–2). Université de Göttingen, Allemagne.

Wildner, M. (1992). Z. Kristallogr. 202, 51-70.